In the philosophy of mathematics, constructivism asserts that it is necessary to find (or "construct") a mathematical object to prove that it exists. When one assumes that an object does not exist and derives a contradiction from that assumption, one still has not found the object and therefore not proved its existence, according to constructivism. This viewpoint involves a verificational interpretation of the existence quantifier, which is at odds with its classical interpretation.
There are many forms of constructivism. These include the program of intuitionism founded by Brouwer, the finitism of Hilbert and Bernays, the constructive recursive mathematics of Shanin and Markov, and Bishop's program of constructive analysis. Constructivism also includes the study of constructive set theories such as IZF and the study of topos theory.
No comments:
Post a Comment